If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+76x-192=0
a = 10; b = 76; c = -192;
Δ = b2-4ac
Δ = 762-4·10·(-192)
Δ = 13456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13456}=116$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-116}{2*10}=\frac{-192}{20} =-9+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+116}{2*10}=\frac{40}{20} =2 $
| z/23=–7 | | .6=2x+2 | | 20+n=24 | | -22g=-110 | | 36^3x+2=7776 | | 6v=25=v | | 3=x/2+6 | | 9x+11=2x-17 | | 3(x-13)-11=-44 | | 19x-4=9x+76 | | .M+2m=3m | | -2/5+(2y+1)/3=3 | | -1c/2=11 | | 64b^2=289 | | 6x-36+6x=-24 | | 4*8^3x=16^x-5 | | 6x-36+6x=0 | | 6x-36+6x=-12 | | 10x+8-2x=16 | | -40-8y=40 | | 7x-28+3x=2 | | c-6=-12 | | 10−5f=–7f | | y–25=75 | | 0.3^2x-1=0.09 | | -9+2k=7 | | 5(2x+5)=6 | | 0.03^2x-1=0.09 | | -6-9y=0 | | a–36=44.9 | | 5x+1=-5x+100 | | 3x+65=2 |